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Software Quality Model (SQM)

Proved technique in achieving better software
quality control

Two-group classification model

Predicted class
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nfp false positive† true negative
† Type I error
‡ Type II error

Type II error more severe
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Importance of Data Quality

Improve the performance accuracies of SQMs

Information =⇒ key to success for any
organization

Common for large datasets to have noise
(≥ 5%)

Disastrous consequences if not handled
correctly
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1 Ensemble-Partitioning Filter

Noise Eliminination with Ensemble-Partitioning Filter – p.6/32



What is Filtering?

A filter removes instances suspected to be
noisy

f(Ik) = {clean, noisy}

Detected noise set

E′
=

E \AE

Filtered set

A

Filter
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1.1 Ensemble Filter
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Principles

Use m base learners, m = 5 or 25

Ik identified as noisy if it is misclassified by λ
classifiers

λ, filtering level

Each base learner Li can be seen as an
expert
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Pros/Cons

Pros

Flexibility of the level of conservativeness

Combine bias of different learners

Higher degree of confidence in tossing out
the instances suspects of being noisy.

Cons

Expertise of different data mining
techniques

Requires to build m models

Problem with large datasets
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1.2 Partitioning Filter
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Principles

Build Lm

scheme

Evaluate E

Build Lm

Noise

Evaluate E

E

Build L1

Evaluate E

PnP1

Evaluate E

Data Partition
Scheme

E
′
=

E \ A

identification

Build L1
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Local and Global Experts

For each instance, two counters, S le
k and Sge

k :

Ik ∈ Pi and Lcv
j (Ik, Pi) 6= ck =⇒ Sle

k + +

Ik /∈ Pi and Lj(Ik, Pi) 6= ck =⇒ Sge
k + +

Noisy instances have large value for S le
k and

Sge
k
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Voting Schemes

Ik is identified as noisy only if S le
k = m

Classifier has a higher prediction accuracy
with the instances in its training set

Ik identified as noisy if S le
k + Sge

k ≥ λ

m× n experts
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Iterative-Partitioning Filter

m = 1 and n = 5

Multi-round execution

Two voting schemes:
Consensus scheme (ipfcons)
Majority scheme (ipfmaj)
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Iterative Process

  No

Yes

Stop criterion

scheme

A

E′ \ {A ∪G} satisfied?

Noise identification

E′ ←
E′ ∪G

E′ ← G
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Multiple-Partitioning Filter

m = 5 and n = 5

No iterative execution

With or without the cross-validation constraint
mpf (Ik) = noisy =⇒ Sge

k + Sle
k ≥ λ

mpfcv(Ik) = noisy =⇒ Sge
k + Sle

k ≥ λ and
Sle

k = m

Use of local and global experts
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Example

Li induced on Pi I1 I2 I3

L1 P1 fp fp fp

P2 fp nfp nfp

P3 nfp nfp fp

L2 P1 fp nfp fp

P2 nfp fp nfp

P3 nfp nfp fp

L3 P1 fp fp nfp

P2 nfp nfp nfp

P3 fp fp fp

Class ck nfp fp fp

Partition i (Pi) 1 1 2

Noisy
√

λ = 5

n = 3

m = 3
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Pros/Cons

Pros

Handle large and distributed datasets

Iterative process

Flexibility on the level of conservativness

Combine bias of different learners

Need less expertize than the Ensemble Filter

Cons

Requires to build m× n models
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1.3 Unified Framework
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Input Parameters

n, number of subsets

Li i = 1, . . . ,m, base learners

bCv, boolean value indicating whether or not
the cross-validation constraint is used

λ, filtering level

β, the rate of good examples to be removed
in each round

Stopping criterion
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Specialization

Symbol m n bCv λ Iteration L G T

cvf 1 1 NA 1 no 1 0 1

ef 25 1 NA 13-25 no 25 0 25

sef 5 1 NA 3-5 no 5 0 5

ipfcons 1 5 true 5 yes 1 4 5

ipfmaj 1 5 true 3 yes 1 4 5

mpf 5 5 false 13-25 no 5 20 25

mpfcv 5 5 true 13-25 no 5 20 25
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2 Case Studies
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Domain Dataset

Software quality data from NASA projects

Very high misclassification rates indicated the
presence of inherent noise in the data

8850 instances

Learner Type I Type II

IBk 32.70% 32.48%

OneR 34.50% 34.38%

JRip 33.18% 33.08%

J48 32.56% 32.42%

LWLStump 33.59% 33.61%
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2.1 Noise Removal
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Most Aggressive Filters

Filters Count Proportion

ipfmaj-7 3131 35.38%

ipfmaj-6 3116 35.21%

ipfmaj-5 3107 35.11%

ipfmaj-4 3071 34.70%

ipfmaj-3 2979 33.66%

cvf 2879 32.53%

mpf-13 2864 32.36%

ef-13 2837 32.06%
...

...
...
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Most Conservative Filters

Filters Count Proportion
...

...
...

mpf-24 1135 12.82%

mpfcv-24 1076 12.16%

ef-23 1059 11.97%

ipfcons-1 1004 11.34%

mpf-25 717 8.10%

mpfcv-25 717 8.10%

ef-24 711 8.03%

ef-25 321 3.63%
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At a Given Filtering Level

mpfcv
mpf

ef

Filtering level (λ)
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Iterative-Partitioning Filter

n = 5

m = 1 (J48)

ipfmaj
ipfcons

Iteration

‖
A
‖
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Combination

Filters Combination count

Combination that agree nfp fp Total Proportion

<empty> NA 2065 376 2441 27.58%

cvf 1/59 175 24 199 2.25%

All the filters 59/59 113 9 122 1.38%
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Conclusion

Two new filtering schemes

Unified framework

Cross-Validation Filtertoo aggressive

Ensemble Filterat high filtering level is
conservative

Noise Eliminination with Ensemble-Partitioning Filter – p.31/32



Questions?
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