Noise Eliminination with Ensemble-Partitioning Filter

A Generic Implementation for Software Quality Engineering

Dr. T. M. Khoshgoftaar and P. Rebours

taghi@cse.fau.edu

Dept. of Computer Science and Engineering Florida Atlantic University Boca Raton, FL 33431

Noise Eliminination with Ensemble-Partitioning Filter - p.1/3

0.1

Noise Eliminination with Ensemble-Partitioning Filter - p.2/3

Overview	
 Introduction Ensemble-Partitioning Filter Case Studies Conclusion 	

Noise Eliminination with Ensemble-Partitioning Filter - p.4/32

Noise Eliminination with Ensemble-Partitioning Filter - p.5/32

1 Ensemble-Partitioning Filter

Noise Eliminination with Ensemble-Partitioning Filter - p.7/32

1.1 Ensemble Filter

Noise Eliminination with Ensemble-Partitioning Filter - p.9/32

Pros/Cons

Pros

- Flexibility of the level of conservativeness
- Combine bias of different learners
- Higher degree of confidence in tossing out the instances suspects of being noisy.

Cons

- Expertise of different data mining techniques
- Requires to build *m* models
- Problem with large datasets

1.2 Partitioning Filter

Principles

Noise Eliminination with Ensemble-Partitioning Filter - p.14/32

Iterative-Partitioning Filter

- m = 1 and n = 5
- Multi-round execution
- Two voting schemes:
 - Consensus scheme (*ipfcons*)
 - Majority scheme (*ipfmaj*)

Iterative Process

Noise Eliminination with Ensemble-Partitioning Filter - p.17/32

Example

L_i ind	uced on P_i	I_1	I_2	I_3	
L_1	P_1	fp	fp	fp	•
	P_2	fp	nfp	nfp	
	P_3	nfp	nfp	fp	
L_2	P_1	fp	nfp	fp	
	P_2	nfp	fp	nfp	λ
	P_3	nfp	nfp	fp	n
L_3	P_1	fp	fp	nfp	m
	P_2	nfp	nfp	nfp	
	P_3	fp	fp	fp	
C	Class c_k	nfp	fp	fp	•
Par	tition i (P_i)	1	1	2	
	Noisy	\checkmark			•

λ	_	5

$$n = 3$$

$$m = 3$$

Noise Eliminination with Ensemble-Partitioning Filter - p.18/3

Pros/Cons

Pros

- Handle large and distributed datasets
- Iterative process
- Flexibility on the level of conservativness
- Combine bias of different learners
- Need less expertize than the Ensemble Filter
 Cons
- Requires to build $m \times n$ models

1.3 Unified Framework

Input Parameters

- *n*, number of subsets
- $L_i \ i = 1, \ldots, m$, base learners
- bCv, boolean value indicating whether or not the cross-validation constraint is used
- λ , filtering level
- \checkmark β , the rate of good examples to be removed in each round
- Stopping criterion

Specialization

Symbol	m	n	bCv	λ	Iteration	L	G	Т
CVf	1	1	NA	1	no	1	0	1
ef	25	1	NA	13-25	no	25	0	25
sef	5	1	NA	3-5	no	5	0	5
ipfcons	1	5	true	5	yes	1	4	5
ipfmaj	1	5	true	3	yes	1	4	5
mpf	5	5	false	13-25	no	5	20	25
mpfcv	5	5	true	13-25	no	5	20	25

2 Case Studies

loise Eliminination with Ensemble-Partitioning Filter – p.24/32

2.1 Noise Removal

Most Aggressive Filters

Filters	Count	Proportion
ipfmaj-7	3131	35.38%
ipfmaj-6	3116	35.21%
ipfmaj-5	3107	35.11%
ipfmaj-4	3071	34.70%
ipfmaj-3	2979	33.66%
CVf	2879	32.53%
mpf-13	2864	32.36%
ef-13	2837	32.06%
:	:	

Most Conservative Filters

Filters	Count	Proportion
:	:	
mpf-24	1135	12.82%
mpfcv-24	1076	12.16%
ef-23	1059	11.97%
ipfcons-1	1004	11.34%
mpf-25	717	8.10%
mpfcv-25	717	8.10%
ef-24	711	8.03%
ef-25	321	3.63%

At a Given Filtering Level

Noise Eliminination with Ensemble-Partitioning Filter - p.28/33

Iterative-Partitioning Filter

Combination

	Filters	Combination count			
Combination	that agree	nfp	fp	Total	Proportion
<empty></empty>	NA	2065	376	2441	27.58%
cvf	1/59	175	24	199	2.25%
All the fi lters	59/59	113	9	122	1.38%

Conclusion
 Two new filtering schemes Unified framework Cross-Validation Filtertoo aggressive
Ensemble Filterat high filtering level is conservative

