Stiffness matrix of a cube with eight nodes and three degrees of freedom by nodes. Generated by Maple. Fortran code. a, b and c represent the dimension of the cube. nu and E characterize the material of the cube. E is the Young modulus and nu is the Poisson coefficient. K(1,1) = E*(2*b^2*c^2*nu+2*a^2*c^2*nu-2*b^2*c^2-a^2*c^2-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/18; K(1,2) = -E*c/(1+nu)/(-1+2*nu)/24; K(1,3) = -b*E/(1+nu)/(-1+2*nu)/24; K(1,4) = E*(4*b^2*c^2-4*b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(1,5) = -E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/24; K(1,6) = -E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/24; K(1,7) = E*(-4*b^2*c^2*nu-4*a^2*c^2*nu+4*b^2*c^2+2*a^2*c^2-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(1,8) = E*c/(1+nu)/(-1+2*nu)/24; K(1,9) = -E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/48; K(1,10) = E*(-2*b^2*c^2+2*b^2*c^2*nu+2*a^2*c^2-4*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(1,11) = E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/24; K(1,12) = -b*E/(1+nu)/(-1+2*nu)/48; K(1,13) = -E*(-2*b^2*c^2*nu-2*a^2*c^2*nu+2*b^2*c^2+a^2*c^2-2*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(1,14) = -E*c/(1+nu)/(-1+2*nu)/48; K(1,15) = E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/24; K(1,16) = -E*(-4*b^2*c^2+4*b^2*c^2*nu+a^2*c^2-2*a^2*c^2*nu-2*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(1,17) = -E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/48; K(1,18) = b*E/(1+nu)/(-1+2*nu)/24; K(1,19) = -E*(2*b^2*c^2*nu+2*a^2*c^2*nu-2*b^2*c^2-a^2*c^2-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(1,20) = E*c/(1+nu)/(-1+2*nu)/48; K(1,21) = b*E/(1+nu)/(-1+2*nu)/48; K(1,22) = -E*(b^2*c^2-b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(1,23) = E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/48; K(1,24) = E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/48; K(2,1) = -E*c/(1+nu)/(-1+2*nu)/24; K(2,2) = E*(-b^2*c^2+2*b^2*c^2*nu-2*a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/18; K(2,3) = -E*a/(1+nu)/(-1+2*nu)/24; K(2,4) = E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/24; K(2,5) = E*(2*b^2*c^2-4*b^2*c^2*nu-2*a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(2,6) = -E*a/(1+nu)/(-1+2*nu)/48; K(2,7) = E*c/(1+nu)/(-1+2*nu)/24; K(2,8) = E*(2*b^2*c^2-4*b^2*c^2*nu+4*a^2*c^2-4*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(2,9) = -E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/48; K(2,10) = -E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/24; K(2,11) = E*(-b^2*c^2+2*b^2*c^2*nu+4*a^2*c^2-4*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(2,12) = -E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/24; K(2,13) = -E*c/(1+nu)/(-1+2*nu)/48; K(2,14) = -E*(b^2*c^2-2*b^2*c^2*nu+2*a^2*c^2-2*a^2*c^2*nu-2*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(2,15) = E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/24; K(2,16) = E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/48; K(2,17) = -E*(-b^2*c^2+2*b^2*c^2*nu+a^2*c^2-a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(2,18) = E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/48; K(2,19) = E*c/(1+nu)/(-1+2*nu)/48; K(2,20) = -E*(-b^2*c^2+2*b^2*c^2*nu-2*a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(2,21) = E*a/(1+nu)/(-1+2*nu)/48; K(2,22) = -E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/48; K(2,23) = -E*(b^2*c^2-2*b^2*c^2*nu-4*a^2*c^2+4*a^2*c^2*nu-2*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(2,24) = E*a/(1+nu)/(-1+2*nu)/24; K(3,1) = -b*E/(1+nu)/(-1+2*nu)/24; K(3,2) = -E*a/(1+nu)/(-1+2*nu)/24; K(3,3) = E*(-b^2*c^2+2*b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-2*a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/18; K(3,4) = E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/24; K(3,5) = -E*a/(1+nu)/(-1+2*nu)/48; K(3,6) = E*(2*b^2*c^2-4*b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-2*a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(3,7) = E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/48; K(3,8) = E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/48; K(3,9) = E*(b^2*c^2-2*b^2*c^2*nu+a^2*c^2-2*a^2*c^2*nu-a^2*b^2+a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(3,10) = -b*E/(1+nu)/(-1+2*nu)/48; K(3,11) = E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/24; K(3,12) = E*(-b^2*c^2+2*b^2*c^2*nu+2*a^2*c^2-4*a^2*c^2*nu-2*a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(3,13) = -E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/24; K(3,14) = -E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/24; K(3,15) = -E*(b^2*c^2-2*b^2*c^2*nu+a^2*c^2-2*a^2*c^2*nu-4*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(3,16) = b*E/(1+nu)/(-1+2*nu)/24; K(3,17) = -E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/48; K(3,18) = -E*(-2*b^2*c^2+4*b^2*c^2*nu+a^2*c^2-2*a^2*c^2*nu-4*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(3,19) = b*E/(1+nu)/(-1+2*nu)/48; K(3,20) = E*a/(1+nu)/(-1+2*nu)/48; K(3,21) = -E*(-b^2*c^2+2*b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-2*a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(3,22) = -E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/48; K(3,23) = E*a/(1+nu)/(-1+2*nu)/24; K(3,24) = -E*(b^2*c^2-2*b^2*c^2*nu-2*a^2*c^2+4*a^2*c^2*nu-4*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(4,1) = E*(4*b^2*c^2-4*b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(4,2) = E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/24; K(4,3) = E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/24; K(4,4) = E*(2*b^2*c^2*nu+2*a^2*c^2*nu-2*b^2*c^2-a^2*c^2-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/18; K(4,5) = E*c/(1+nu)/(-1+2*nu)/24; K(4,6) = b*E/(1+nu)/(-1+2*nu)/24; K(4,7) = E*(-2*b^2*c^2+2*b^2*c^2*nu+2*a^2*c^2-4*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(4,8) = -E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/24; K(4,9) = b*E/(1+nu)/(-1+2*nu)/48; K(4,10) = E*(-4*b^2*c^2*nu-4*a^2*c^2*nu+4*b^2*c^2+2*a^2*c^2-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(4,11) = -E*c/(1+nu)/(-1+2*nu)/24; K(4,12) = E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/48; K(4,13) = -E*(-4*b^2*c^2+4*b^2*c^2*nu+a^2*c^2-2*a^2*c^2*nu-2*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(4,14) = E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/48; K(4,15) = -b*E/(1+nu)/(-1+2*nu)/24; K(4,16) = -E*(-2*b^2*c^2*nu-2*a^2*c^2*nu+2*b^2*c^2+a^2*c^2-2*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(4,17) = E*c/(1+nu)/(-1+2*nu)/48; K(4,18) = -E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/24; K(4,19) = -E*(b^2*c^2-b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(4,20) = -E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/48; K(4,21) = -E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/48; K(4,22) = -E*(2*b^2*c^2*nu+2*a^2*c^2*nu-2*b^2*c^2-a^2*c^2-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(4,23) = -E*c/(1+nu)/(-1+2*nu)/48; K(4,24) = -b*E/(1+nu)/(-1+2*nu)/48; K(5,1) = -E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/24; K(5,2) = E*(2*b^2*c^2-4*b^2*c^2*nu-2*a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(5,3) = -E*a/(1+nu)/(-1+2*nu)/48; K(5,4) = E*c/(1+nu)/(-1+2*nu)/24; K(5,5) = E*(-b^2*c^2+2*b^2*c^2*nu-2*a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/18; K(5,6) = -E*a/(1+nu)/(-1+2*nu)/24; K(5,7) = E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/24; K(5,8) = E*(-b^2*c^2+2*b^2*c^2*nu+4*a^2*c^2-4*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(5,9) = -E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/24; K(5,10) = -E*c/(1+nu)/(-1+2*nu)/24; K(5,11) = E*(2*b^2*c^2-4*b^2*c^2*nu+4*a^2*c^2-4*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(5,12) = -E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/48; K(5,13) = -E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/48; K(5,14) = -E*(-b^2*c^2+2*b^2*c^2*nu+a^2*c^2-a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(5,15) = E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/48; K(5,16) = E*c/(1+nu)/(-1+2*nu)/48; K(5,17) = -E*(b^2*c^2-2*b^2*c^2*nu+2*a^2*c^2-2*a^2*c^2*nu-2*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(5,18) = E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/24; K(5,19) = E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/48; K(5,20) = -E*(b^2*c^2-2*b^2*c^2*nu-4*a^2*c^2+4*a^2*c^2*nu-2*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(5,21) = E*a/(1+nu)/(-1+2*nu)/24; K(5,22) = -E*c/(1+nu)/(-1+2*nu)/48; K(5,23) = -E*(-b^2*c^2+2*b^2*c^2*nu-2*a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(5,24) = E*a/(1+nu)/(-1+2*nu)/48; K(6,1) = -E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/24; K(6,2) = -E*a/(1+nu)/(-1+2*nu)/48; K(6,3) = E*(2*b^2*c^2-4*b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-2*a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(6,4) = b*E/(1+nu)/(-1+2*nu)/24; K(6,5) = -E*a/(1+nu)/(-1+2*nu)/24; K(6,6) = E*(-b^2*c^2+2*b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-2*a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/18; K(6,7) = b*E/(1+nu)/(-1+2*nu)/48; K(6,8) = E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/24; K(6,9) = E*(-b^2*c^2+2*b^2*c^2*nu+2*a^2*c^2-4*a^2*c^2*nu-2*a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(6,10) = -E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/48; K(6,11) = E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/48; K(6,12) = E*(b^2*c^2-2*b^2*c^2*nu+a^2*c^2-2*a^2*c^2*nu-a^2*b^2+a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(6,13) = -b*E/(1+nu)/(-1+2*nu)/24; K(6,14) = -E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/48; K(6,15) = -E*(-2*b^2*c^2+4*b^2*c^2*nu+a^2*c^2-2*a^2*c^2*nu-4*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(6,16) = E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/24; K(6,17) = -E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/24; K(6,18) = -E*(b^2*c^2-2*b^2*c^2*nu+a^2*c^2-2*a^2*c^2*nu-4*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(6,19) = E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/48; K(6,20) = E*a/(1+nu)/(-1+2*nu)/24; K(6,21) = -E*(b^2*c^2-2*b^2*c^2*nu-2*a^2*c^2+4*a^2*c^2*nu-4*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(6,22) = -b*E/(1+nu)/(-1+2*nu)/48; K(6,23) = E*a/(1+nu)/(-1+2*nu)/48; K(6,24) = -E*(-b^2*c^2+2*b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-2*a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(7,1) = E*(-4*b^2*c^2*nu-4*a^2*c^2*nu+4*b^2*c^2+2*a^2*c^2-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(7,2) = E*c/(1+nu)/(-1+2*nu)/24; K(7,3) = E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/48; K(7,4) = E*(-2*b^2*c^2+2*b^2*c^2*nu+2*a^2*c^2-4*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(7,5) = E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/24; K(7,6) = b*E/(1+nu)/(-1+2*nu)/48; K(7,7) = E*(2*b^2*c^2*nu+2*a^2*c^2*nu-2*b^2*c^2-a^2*c^2-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/18; K(7,8) = -E*c/(1+nu)/(-1+2*nu)/24; K(7,9) = b*E/(1+nu)/(-1+2*nu)/24; K(7,10) = E*(4*b^2*c^2-4*b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(7,11) = -E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/24; K(7,12) = E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/24; K(7,13) = -E*(2*b^2*c^2*nu+2*a^2*c^2*nu-2*b^2*c^2-a^2*c^2-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(7,14) = E*c/(1+nu)/(-1+2*nu)/48; K(7,15) = -b*E/(1+nu)/(-1+2*nu)/48; K(7,16) = -E*(b^2*c^2-b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(7,17) = E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/48; K(7,18) = -E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/48; K(7,19) = -E*(-2*b^2*c^2*nu-2*a^2*c^2*nu+2*b^2*c^2+a^2*c^2-2*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(7,20) = -E*c/(1+nu)/(-1+2*nu)/48; K(7,21) = -E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/24; K(7,22) = -E*(-4*b^2*c^2+4*b^2*c^2*nu+a^2*c^2-2*a^2*c^2*nu-2*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(7,23) = -E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/48; K(7,24) = -b*E/(1+nu)/(-1+2*nu)/24; K(8,1) = E*c/(1+nu)/(-1+2*nu)/24; K(8,2) = E*(2*b^2*c^2-4*b^2*c^2*nu+4*a^2*c^2-4*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(8,3) = E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/48; K(8,4) = -E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/24; K(8,5) = E*(-b^2*c^2+2*b^2*c^2*nu+4*a^2*c^2-4*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(8,6) = E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/24; K(8,7) = -E*c/(1+nu)/(-1+2*nu)/24; K(8,8) = E*(-b^2*c^2+2*b^2*c^2*nu-2*a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/18; K(8,9) = E*a/(1+nu)/(-1+2*nu)/24; K(8,10) = E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/24; K(8,11) = E*(2*b^2*c^2-4*b^2*c^2*nu-2*a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(8,12) = E*a/(1+nu)/(-1+2*nu)/48; K(8,13) = E*c/(1+nu)/(-1+2*nu)/48; K(8,14) = -E*(-b^2*c^2+2*b^2*c^2*nu-2*a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(8,15) = -E*a/(1+nu)/(-1+2*nu)/48; K(8,16) = -E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/48; K(8,17) = -E*(b^2*c^2-2*b^2*c^2*nu-4*a^2*c^2+4*a^2*c^2*nu-2*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(8,18) = -E*a/(1+nu)/(-1+2*nu)/24; K(8,19) = -E*c/(1+nu)/(-1+2*nu)/48; K(8,20) = -E*(b^2*c^2-2*b^2*c^2*nu+2*a^2*c^2-2*a^2*c^2*nu-2*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(8,21) = -E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/24; K(8,22) = E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/48; K(8,23) = -E*(-b^2*c^2+2*b^2*c^2*nu+a^2*c^2-a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(8,24) = -E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/48; K(9,1) = -E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/48; K(9,2) = -E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/48; K(9,3) = E*(b^2*c^2-2*b^2*c^2*nu+a^2*c^2-2*a^2*c^2*nu-a^2*b^2+a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(9,4) = b*E/(1+nu)/(-1+2*nu)/48; K(9,5) = -E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/24; K(9,6) = E*(-b^2*c^2+2*b^2*c^2*nu+2*a^2*c^2-4*a^2*c^2*nu-2*a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(9,7) = b*E/(1+nu)/(-1+2*nu)/24; K(9,8) = E*a/(1+nu)/(-1+2*nu)/24; K(9,9) = E*(-b^2*c^2+2*b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-2*a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/18; K(9,10) = -E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/24; K(9,11) = E*a/(1+nu)/(-1+2*nu)/48; K(9,12) = E*(2*b^2*c^2-4*b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-2*a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(9,13) = -b*E/(1+nu)/(-1+2*nu)/48; K(9,14) = -E*a/(1+nu)/(-1+2*nu)/48; K(9,15) = -E*(-b^2*c^2+2*b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-2*a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(9,16) = E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/48; K(9,17) = -E*a/(1+nu)/(-1+2*nu)/24; K(9,18) = -E*(b^2*c^2-2*b^2*c^2*nu-2*a^2*c^2+4*a^2*c^2*nu-4*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(9,19) = E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/24; K(9,20) = E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/24; K(9,21) = -E*(b^2*c^2-2*b^2*c^2*nu+a^2*c^2-2*a^2*c^2*nu-4*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(9,22) = -b*E/(1+nu)/(-1+2*nu)/24; K(9,23) = E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/48; K(9,24) = -E*(-2*b^2*c^2+4*b^2*c^2*nu+a^2*c^2-2*a^2*c^2*nu-4*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(10,1) = E*(-2*b^2*c^2+2*b^2*c^2*nu+2*a^2*c^2-4*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(10,2) = -E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/24; K(10,3) = -b*E/(1+nu)/(-1+2*nu)/48; K(10,4) = E*(-4*b^2*c^2*nu-4*a^2*c^2*nu+4*b^2*c^2+2*a^2*c^2-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(10,5) = -E*c/(1+nu)/(-1+2*nu)/24; K(10,6) = -E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/48; K(10,7) = E*(4*b^2*c^2-4*b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(10,8) = E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/24; K(10,9) = -E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/24; K(10,10) = E*(2*b^2*c^2*nu+2*a^2*c^2*nu-2*b^2*c^2-a^2*c^2-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/18; K(10,11) = E*c/(1+nu)/(-1+2*nu)/24; K(10,12) = -b*E/(1+nu)/(-1+2*nu)/24; K(10,13) = -E*(b^2*c^2-b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(10,14) = -E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/48; K(10,15) = E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/48; K(10,16) = -E*(2*b^2*c^2*nu+2*a^2*c^2*nu-2*b^2*c^2-a^2*c^2-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(10,17) = -E*c/(1+nu)/(-1+2*nu)/48; K(10,18) = b*E/(1+nu)/(-1+2*nu)/48; K(10,19) = -E*(-4*b^2*c^2+4*b^2*c^2*nu+a^2*c^2-2*a^2*c^2*nu-2*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(10,20) = E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/48; K(10,21) = b*E/(1+nu)/(-1+2*nu)/24; K(10,22) = -E*(-2*b^2*c^2*nu-2*a^2*c^2*nu+2*b^2*c^2+a^2*c^2-2*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(10,23) = E*c/(1+nu)/(-1+2*nu)/48; K(10,24) = E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/24; K(11,1) = E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/24; K(11,2) = E*(-b^2*c^2+2*b^2*c^2*nu+4*a^2*c^2-4*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(11,3) = E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/24; K(11,4) = -E*c/(1+nu)/(-1+2*nu)/24; K(11,5) = E*(2*b^2*c^2-4*b^2*c^2*nu+4*a^2*c^2-4*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(11,6) = E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/48; K(11,7) = -E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/24; K(11,8) = E*(2*b^2*c^2-4*b^2*c^2*nu-2*a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(11,9) = E*a/(1+nu)/(-1+2*nu)/48; K(11,10) = E*c/(1+nu)/(-1+2*nu)/24; K(11,11) = E*(-b^2*c^2+2*b^2*c^2*nu-2*a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/18; K(11,12) = E*a/(1+nu)/(-1+2*nu)/24; K(11,13) = E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/48; K(11,14) = -E*(b^2*c^2-2*b^2*c^2*nu-4*a^2*c^2+4*a^2*c^2*nu-2*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(11,15) = -E*a/(1+nu)/(-1+2*nu)/24; K(11,16) = -E*c/(1+nu)/(-1+2*nu)/48; K(11,17) = -E*(-b^2*c^2+2*b^2*c^2*nu-2*a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(11,18) = -E*a/(1+nu)/(-1+2*nu)/48; K(11,19) = -E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/48; K(11,20) = -E*(-b^2*c^2+2*b^2*c^2*nu+a^2*c^2-a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(11,21) = -E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/48; K(11,22) = E*c/(1+nu)/(-1+2*nu)/48; K(11,23) = -E*(b^2*c^2-2*b^2*c^2*nu+2*a^2*c^2-2*a^2*c^2*nu-2*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(11,24) = -E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/24; K(12,1) = -b*E/(1+nu)/(-1+2*nu)/48; K(12,2) = -E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/24; K(12,3) = E*(-b^2*c^2+2*b^2*c^2*nu+2*a^2*c^2-4*a^2*c^2*nu-2*a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(12,4) = E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/48; K(12,5) = -E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/48; K(12,6) = E*(b^2*c^2-2*b^2*c^2*nu+a^2*c^2-2*a^2*c^2*nu-a^2*b^2+a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(12,7) = E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/24; K(12,8) = E*a/(1+nu)/(-1+2*nu)/48; K(12,9) = E*(2*b^2*c^2-4*b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-2*a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(12,10) = -b*E/(1+nu)/(-1+2*nu)/24; K(12,11) = E*a/(1+nu)/(-1+2*nu)/24; K(12,12) = E*(-b^2*c^2+2*b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-2*a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/18; K(12,13) = -E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/48; K(12,14) = -E*a/(1+nu)/(-1+2*nu)/24; K(12,15) = -E*(b^2*c^2-2*b^2*c^2*nu-2*a^2*c^2+4*a^2*c^2*nu-4*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(12,16) = b*E/(1+nu)/(-1+2*nu)/48; K(12,17) = -E*a/(1+nu)/(-1+2*nu)/48; K(12,18) = -E*(-b^2*c^2+2*b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-2*a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(12,19) = b*E/(1+nu)/(-1+2*nu)/24; K(12,20) = E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/48; K(12,21) = -E*(-2*b^2*c^2+4*b^2*c^2*nu+a^2*c^2-2*a^2*c^2*nu-4*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(12,22) = -E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/24; K(12,23) = E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/24; K(12,24) = -E*(b^2*c^2-2*b^2*c^2*nu+a^2*c^2-2*a^2*c^2*nu-4*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(13,1) = -E*(-2*b^2*c^2*nu-2*a^2*c^2*nu+2*b^2*c^2+a^2*c^2-2*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(13,2) = -E*c/(1+nu)/(-1+2*nu)/48; K(13,3) = -E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/24; K(13,4) = -E*(-4*b^2*c^2+4*b^2*c^2*nu+a^2*c^2-2*a^2*c^2*nu-2*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(13,5) = -E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/48; K(13,6) = -b*E/(1+nu)/(-1+2*nu)/24; K(13,7) = -E*(2*b^2*c^2*nu+2*a^2*c^2*nu-2*b^2*c^2-a^2*c^2-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(13,8) = E*c/(1+nu)/(-1+2*nu)/48; K(13,9) = -b*E/(1+nu)/(-1+2*nu)/48; K(13,10) = -E*(b^2*c^2-b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(13,11) = E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/48; K(13,12) = -E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/48; K(13,13) = E*(2*b^2*c^2*nu+2*a^2*c^2*nu-2*b^2*c^2-a^2*c^2-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/18; K(13,14) = -E*c/(1+nu)/(-1+2*nu)/24; K(13,15) = b*E/(1+nu)/(-1+2*nu)/24; K(13,16) = E*(4*b^2*c^2-4*b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(13,17) = -E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/24; K(13,18) = E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/24; K(13,19) = E*(-4*b^2*c^2*nu-4*a^2*c^2*nu+4*b^2*c^2+2*a^2*c^2-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(13,20) = E*c/(1+nu)/(-1+2*nu)/24; K(13,21) = E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/48; K(13,22) = E*(-2*b^2*c^2+2*b^2*c^2*nu+2*a^2*c^2-4*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(13,23) = E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/24; K(13,24) = b*E/(1+nu)/(-1+2*nu)/48; K(14,1) = -E*c/(1+nu)/(-1+2*nu)/48; K(14,2) = -E*(b^2*c^2-2*b^2*c^2*nu+2*a^2*c^2-2*a^2*c^2*nu-2*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(14,3) = -E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/24; K(14,4) = E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/48; K(14,5) = -E*(-b^2*c^2+2*b^2*c^2*nu+a^2*c^2-a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(14,6) = -E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/48; K(14,7) = E*c/(1+nu)/(-1+2*nu)/48; K(14,8) = -E*(-b^2*c^2+2*b^2*c^2*nu-2*a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(14,9) = -E*a/(1+nu)/(-1+2*nu)/48; K(14,10) = -E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/48; K(14,11) = -E*(b^2*c^2-2*b^2*c^2*nu-4*a^2*c^2+4*a^2*c^2*nu-2*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(14,12) = -E*a/(1+nu)/(-1+2*nu)/24; K(14,13) = -E*c/(1+nu)/(-1+2*nu)/24; K(14,14) = E*(-b^2*c^2+2*b^2*c^2*nu-2*a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/18; K(14,15) = E*a/(1+nu)/(-1+2*nu)/24; K(14,16) = E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/24; K(14,17) = E*(2*b^2*c^2-4*b^2*c^2*nu-2*a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(14,18) = E*a/(1+nu)/(-1+2*nu)/48; K(14,19) = E*c/(1+nu)/(-1+2*nu)/24; K(14,20) = E*(2*b^2*c^2-4*b^2*c^2*nu+4*a^2*c^2-4*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(14,21) = E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/48; K(14,22) = -E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/24; K(14,23) = E*(-b^2*c^2+2*b^2*c^2*nu+4*a^2*c^2-4*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(14,24) = E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/24; K(15,1) = E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/24; K(15,2) = E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/24; K(15,3) = -E*(b^2*c^2-2*b^2*c^2*nu+a^2*c^2-2*a^2*c^2*nu-4*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(15,4) = -b*E/(1+nu)/(-1+2*nu)/24; K(15,5) = E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/48; K(15,6) = -E*(-2*b^2*c^2+4*b^2*c^2*nu+a^2*c^2-2*a^2*c^2*nu-4*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(15,7) = -b*E/(1+nu)/(-1+2*nu)/48; K(15,8) = -E*a/(1+nu)/(-1+2*nu)/48; K(15,9) = -E*(-b^2*c^2+2*b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-2*a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(15,10) = E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/48; K(15,11) = -E*a/(1+nu)/(-1+2*nu)/24; K(15,12) = -E*(b^2*c^2-2*b^2*c^2*nu-2*a^2*c^2+4*a^2*c^2*nu-4*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(15,13) = b*E/(1+nu)/(-1+2*nu)/24; K(15,14) = E*a/(1+nu)/(-1+2*nu)/24; K(15,15) = E*(-b^2*c^2+2*b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-2*a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/18; K(15,16) = -E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/24; K(15,17) = E*a/(1+nu)/(-1+2*nu)/48; K(15,18) = E*(2*b^2*c^2-4*b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-2*a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(15,19) = -E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/48; K(15,20) = -E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/48; K(15,21) = E*(b^2*c^2-2*b^2*c^2*nu+a^2*c^2-2*a^2*c^2*nu-a^2*b^2+a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(15,22) = b*E/(1+nu)/(-1+2*nu)/48; K(15,23) = -E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/24; K(15,24) = E*(-b^2*c^2+2*b^2*c^2*nu+2*a^2*c^2-4*a^2*c^2*nu-2*a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(16,1) = -E*(-4*b^2*c^2+4*b^2*c^2*nu+a^2*c^2-2*a^2*c^2*nu-2*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(16,2) = E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/48; K(16,3) = b*E/(1+nu)/(-1+2*nu)/24; K(16,4) = -E*(-2*b^2*c^2*nu-2*a^2*c^2*nu+2*b^2*c^2+a^2*c^2-2*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(16,5) = E*c/(1+nu)/(-1+2*nu)/48; K(16,6) = E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/24; K(16,7) = -E*(b^2*c^2-b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(16,8) = -E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/48; K(16,9) = E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/48; K(16,10) = -E*(2*b^2*c^2*nu+2*a^2*c^2*nu-2*b^2*c^2-a^2*c^2-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(16,11) = -E*c/(1+nu)/(-1+2*nu)/48; K(16,12) = b*E/(1+nu)/(-1+2*nu)/48; K(16,13) = E*(4*b^2*c^2-4*b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(16,14) = E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/24; K(16,15) = -E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/24; K(16,16) = E*(2*b^2*c^2*nu+2*a^2*c^2*nu-2*b^2*c^2-a^2*c^2-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/18; K(16,17) = E*c/(1+nu)/(-1+2*nu)/24; K(16,18) = -b*E/(1+nu)/(-1+2*nu)/24; K(16,19) = E*(-2*b^2*c^2+2*b^2*c^2*nu+2*a^2*c^2-4*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(16,20) = -E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/24; K(16,21) = -b*E/(1+nu)/(-1+2*nu)/48; K(16,22) = E*(-4*b^2*c^2*nu-4*a^2*c^2*nu+4*b^2*c^2+2*a^2*c^2-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(16,23) = -E*c/(1+nu)/(-1+2*nu)/24; K(16,24) = -E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/48; K(17,1) = -E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/48; K(17,2) = -E*(-b^2*c^2+2*b^2*c^2*nu+a^2*c^2-a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(17,3) = -E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/48; K(17,4) = E*c/(1+nu)/(-1+2*nu)/48; K(17,5) = -E*(b^2*c^2-2*b^2*c^2*nu+2*a^2*c^2-2*a^2*c^2*nu-2*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(17,6) = -E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/24; K(17,7) = E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/48; K(17,8) = -E*(b^2*c^2-2*b^2*c^2*nu-4*a^2*c^2+4*a^2*c^2*nu-2*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(17,9) = -E*a/(1+nu)/(-1+2*nu)/24; K(17,10) = -E*c/(1+nu)/(-1+2*nu)/48; K(17,11) = -E*(-b^2*c^2+2*b^2*c^2*nu-2*a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(17,12) = -E*a/(1+nu)/(-1+2*nu)/48; K(17,13) = -E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/24; K(17,14) = E*(2*b^2*c^2-4*b^2*c^2*nu-2*a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(17,15) = E*a/(1+nu)/(-1+2*nu)/48; K(17,16) = E*c/(1+nu)/(-1+2*nu)/24; K(17,17) = E*(-b^2*c^2+2*b^2*c^2*nu-2*a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/18; K(17,18) = E*a/(1+nu)/(-1+2*nu)/24; K(17,19) = E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/24; K(17,20) = E*(-b^2*c^2+2*b^2*c^2*nu+4*a^2*c^2-4*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(17,21) = E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/24; K(17,22) = -E*c/(1+nu)/(-1+2*nu)/24; K(17,23) = E*(2*b^2*c^2-4*b^2*c^2*nu+4*a^2*c^2-4*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(17,24) = E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/48; K(18,1) = b*E/(1+nu)/(-1+2*nu)/24; K(18,2) = E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/48; K(18,3) = -E*(-2*b^2*c^2+4*b^2*c^2*nu+a^2*c^2-2*a^2*c^2*nu-4*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(18,4) = -E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/24; K(18,5) = E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/24; K(18,6) = -E*(b^2*c^2-2*b^2*c^2*nu+a^2*c^2-2*a^2*c^2*nu-4*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(18,7) = -E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/48; K(18,8) = -E*a/(1+nu)/(-1+2*nu)/24; K(18,9) = -E*(b^2*c^2-2*b^2*c^2*nu-2*a^2*c^2+4*a^2*c^2*nu-4*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(18,10) = b*E/(1+nu)/(-1+2*nu)/48; K(18,11) = -E*a/(1+nu)/(-1+2*nu)/48; K(18,12) = -E*(-b^2*c^2+2*b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-2*a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(18,13) = E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/24; K(18,14) = E*a/(1+nu)/(-1+2*nu)/48; K(18,15) = E*(2*b^2*c^2-4*b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-2*a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(18,16) = -b*E/(1+nu)/(-1+2*nu)/24; K(18,17) = E*a/(1+nu)/(-1+2*nu)/24; K(18,18) = E*(-b^2*c^2+2*b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-2*a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/18; K(18,19) = -b*E/(1+nu)/(-1+2*nu)/48; K(18,20) = -E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/24; K(18,21) = E*(-b^2*c^2+2*b^2*c^2*nu+2*a^2*c^2-4*a^2*c^2*nu-2*a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(18,22) = E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/48; K(18,23) = -E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/48; K(18,24) = E*(b^2*c^2-2*b^2*c^2*nu+a^2*c^2-2*a^2*c^2*nu-a^2*b^2+a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(19,1) = -E*(2*b^2*c^2*nu+2*a^2*c^2*nu-2*b^2*c^2-a^2*c^2-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(19,2) = E*c/(1+nu)/(-1+2*nu)/48; K(19,3) = b*E/(1+nu)/(-1+2*nu)/48; K(19,4) = -E*(b^2*c^2-b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(19,5) = E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/48; K(19,6) = E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/48; K(19,7) = -E*(-2*b^2*c^2*nu-2*a^2*c^2*nu+2*b^2*c^2+a^2*c^2-2*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(19,8) = -E*c/(1+nu)/(-1+2*nu)/48; K(19,9) = E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/24; K(19,10) = -E*(-4*b^2*c^2+4*b^2*c^2*nu+a^2*c^2-2*a^2*c^2*nu-2*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(19,11) = -E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/48; K(19,12) = b*E/(1+nu)/(-1+2*nu)/24; K(19,13) = E*(-4*b^2*c^2*nu-4*a^2*c^2*nu+4*b^2*c^2+2*a^2*c^2-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(19,14) = E*c/(1+nu)/(-1+2*nu)/24; K(19,15) = -E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/48; K(19,16) = E*(-2*b^2*c^2+2*b^2*c^2*nu+2*a^2*c^2-4*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(19,17) = E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/24; K(19,18) = -b*E/(1+nu)/(-1+2*nu)/48; K(19,19) = E*(2*b^2*c^2*nu+2*a^2*c^2*nu-2*b^2*c^2-a^2*c^2-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/18; K(19,20) = -E*c/(1+nu)/(-1+2*nu)/24; K(19,21) = -b*E/(1+nu)/(-1+2*nu)/24; K(19,22) = E*(4*b^2*c^2-4*b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(19,23) = -E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/24; K(19,24) = -E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/24; K(20,1) = E*c/(1+nu)/(-1+2*nu)/48; K(20,2) = -E*(-b^2*c^2+2*b^2*c^2*nu-2*a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(20,3) = E*a/(1+nu)/(-1+2*nu)/48; K(20,4) = -E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/48; K(20,5) = -E*(b^2*c^2-2*b^2*c^2*nu-4*a^2*c^2+4*a^2*c^2*nu-2*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(20,6) = E*a/(1+nu)/(-1+2*nu)/24; K(20,7) = -E*c/(1+nu)/(-1+2*nu)/48; K(20,8) = -E*(b^2*c^2-2*b^2*c^2*nu+2*a^2*c^2-2*a^2*c^2*nu-2*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(20,9) = E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/24; K(20,10) = E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/48; K(20,11) = -E*(-b^2*c^2+2*b^2*c^2*nu+a^2*c^2-a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(20,12) = E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/48; K(20,13) = E*c/(1+nu)/(-1+2*nu)/24; K(20,14) = E*(2*b^2*c^2-4*b^2*c^2*nu+4*a^2*c^2-4*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(20,15) = -E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/48; K(20,16) = -E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/24; K(20,17) = E*(-b^2*c^2+2*b^2*c^2*nu+4*a^2*c^2-4*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(20,18) = -E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/24; K(20,19) = -E*c/(1+nu)/(-1+2*nu)/24; K(20,20) = E*(-b^2*c^2+2*b^2*c^2*nu-2*a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/18; K(20,21) = -E*a/(1+nu)/(-1+2*nu)/24; K(20,22) = E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/24; K(20,23) = E*(2*b^2*c^2-4*b^2*c^2*nu-2*a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(20,24) = -E*a/(1+nu)/(-1+2*nu)/48; K(21,1) = b*E/(1+nu)/(-1+2*nu)/48; K(21,2) = E*a/(1+nu)/(-1+2*nu)/48; K(21,3) = -E*(-b^2*c^2+2*b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-2*a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(21,4) = -E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/48; K(21,5) = E*a/(1+nu)/(-1+2*nu)/24; K(21,6) = -E*(b^2*c^2-2*b^2*c^2*nu-2*a^2*c^2+4*a^2*c^2*nu-4*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(21,7) = -E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/24; K(21,8) = -E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/24; K(21,9) = -E*(b^2*c^2-2*b^2*c^2*nu+a^2*c^2-2*a^2*c^2*nu-4*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(21,10) = b*E/(1+nu)/(-1+2*nu)/24; K(21,11) = -E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/48; K(21,12) = -E*(-2*b^2*c^2+4*b^2*c^2*nu+a^2*c^2-2*a^2*c^2*nu-4*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(21,13) = E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/48; K(21,14) = E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/48; K(21,15) = E*(b^2*c^2-2*b^2*c^2*nu+a^2*c^2-2*a^2*c^2*nu-a^2*b^2+a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(21,16) = -b*E/(1+nu)/(-1+2*nu)/48; K(21,17) = E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/24; K(21,18) = E*(-b^2*c^2+2*b^2*c^2*nu+2*a^2*c^2-4*a^2*c^2*nu-2*a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(21,19) = -b*E/(1+nu)/(-1+2*nu)/24; K(21,20) = -E*a/(1+nu)/(-1+2*nu)/24; K(21,21) = E*(-b^2*c^2+2*b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-2*a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/18; K(21,22) = E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/24; K(21,23) = -E*a/(1+nu)/(-1+2*nu)/48; K(21,24) = E*(2*b^2*c^2-4*b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-2*a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(22,1) = -E*(b^2*c^2-b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(22,2) = -E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/48; K(22,3) = -E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/48; K(22,4) = -E*(2*b^2*c^2*nu+2*a^2*c^2*nu-2*b^2*c^2-a^2*c^2-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(22,5) = -E*c/(1+nu)/(-1+2*nu)/48; K(22,6) = -b*E/(1+nu)/(-1+2*nu)/48; K(22,7) = -E*(-4*b^2*c^2+4*b^2*c^2*nu+a^2*c^2-2*a^2*c^2*nu-2*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(22,8) = E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/48; K(22,9) = -b*E/(1+nu)/(-1+2*nu)/24; K(22,10) = -E*(-2*b^2*c^2*nu-2*a^2*c^2*nu+2*b^2*c^2+a^2*c^2-2*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(22,11) = E*c/(1+nu)/(-1+2*nu)/48; K(22,12) = -E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/24; K(22,13) = E*(-2*b^2*c^2+2*b^2*c^2*nu+2*a^2*c^2-4*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(22,14) = -E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/24; K(22,15) = b*E/(1+nu)/(-1+2*nu)/48; K(22,16) = E*(-4*b^2*c^2*nu-4*a^2*c^2*nu+4*b^2*c^2+2*a^2*c^2-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(22,17) = -E*c/(1+nu)/(-1+2*nu)/24; K(22,18) = E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/48; K(22,19) = E*(4*b^2*c^2-4*b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(22,20) = E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/24; K(22,21) = E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/24; K(22,22) = E*(2*b^2*c^2*nu+2*a^2*c^2*nu-2*b^2*c^2-a^2*c^2-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/18; K(22,23) = E*c/(1+nu)/(-1+2*nu)/24; K(22,24) = b*E/(1+nu)/(-1+2*nu)/24; K(23,1) = E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/48; K(23,2) = -E*(b^2*c^2-2*b^2*c^2*nu-4*a^2*c^2+4*a^2*c^2*nu-2*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(23,3) = E*a/(1+nu)/(-1+2*nu)/24; K(23,4) = -E*c/(1+nu)/(-1+2*nu)/48; K(23,5) = -E*(-b^2*c^2+2*b^2*c^2*nu-2*a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(23,6) = E*a/(1+nu)/(-1+2*nu)/48; K(23,7) = -E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/48; K(23,8) = -E*(-b^2*c^2+2*b^2*c^2*nu+a^2*c^2-a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(23,9) = E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/48; K(23,10) = E*c/(1+nu)/(-1+2*nu)/48; K(23,11) = -E*(b^2*c^2-2*b^2*c^2*nu+2*a^2*c^2-2*a^2*c^2*nu-2*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(23,12) = E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/24; K(23,13) = E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/24; K(23,14) = E*(-b^2*c^2+2*b^2*c^2*nu+4*a^2*c^2-4*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(23,15) = -E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/24; K(23,16) = -E*c/(1+nu)/(-1+2*nu)/24; K(23,17) = E*(2*b^2*c^2-4*b^2*c^2*nu+4*a^2*c^2-4*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(23,18) = -E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/48; K(23,19) = -E*(-1+4*nu)*c/(1+nu)/(-1+2*nu)/24; K(23,20) = E*(2*b^2*c^2-4*b^2*c^2*nu-2*a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(23,21) = -E*a/(1+nu)/(-1+2*nu)/48; K(23,22) = E*c/(1+nu)/(-1+2*nu)/24; K(23,23) = E*(-b^2*c^2+2*b^2*c^2*nu-2*a^2*c^2+2*a^2*c^2*nu-a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/18; K(23,24) = -E*a/(1+nu)/(-1+2*nu)/24; K(24,1) = E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/48; K(24,2) = E*a/(1+nu)/(-1+2*nu)/24; K(24,3) = -E*(b^2*c^2-2*b^2*c^2*nu-2*a^2*c^2+4*a^2*c^2*nu-4*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(24,4) = -b*E/(1+nu)/(-1+2*nu)/48; K(24,5) = E*a/(1+nu)/(-1+2*nu)/48; K(24,6) = -E*(-b^2*c^2+2*b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-2*a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(24,7) = -b*E/(1+nu)/(-1+2*nu)/24; K(24,8) = -E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/48; K(24,9) = -E*(-2*b^2*c^2+4*b^2*c^2*nu+a^2*c^2-2*a^2*c^2*nu-4*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/72; K(24,10) = E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/24; K(24,11) = -E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/24; K(24,12) = -E*(b^2*c^2-2*b^2*c^2*nu+a^2*c^2-2*a^2*c^2*nu-4*a^2*b^2+4*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(24,13) = b*E/(1+nu)/(-1+2*nu)/48; K(24,14) = E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/24; K(24,15) = E*(-b^2*c^2+2*b^2*c^2*nu+2*a^2*c^2-4*a^2*c^2*nu-2*a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(24,16) = -E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/48; K(24,17) = E*a*(-1+4*nu)/(1+nu)/(-1+2*nu)/48; K(24,18) = E*(b^2*c^2-2*b^2*c^2*nu+a^2*c^2-2*a^2*c^2*nu-a^2*b^2+a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(24,19) = -E*(-1+4*nu)*b/(1+nu)/(-1+2*nu)/24; K(24,20) = -E*a/(1+nu)/(-1+2*nu)/48; K(24,21) = E*(2*b^2*c^2-4*b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-2*a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/36; K(24,22) = b*E/(1+nu)/(-1+2*nu)/24; K(24,23) = -E*a/(1+nu)/(-1+2*nu)/24; K(24,24) = E*(-b^2*c^2+2*b^2*c^2*nu-a^2*c^2+2*a^2*c^2*nu-2*a^2*b^2+2*a^2*b^2*nu)/a/b/c/(1+nu)/(-1+2*nu)/18;